Modeling Relevance as a Function of Retrieval Rank

نویسندگان

  • Xiaolu Lu
  • Alistair Moffat
  • J. Shane Culpepper
چکیده

Batched evaluations in IR experiments are commonly built using relevance judgments formed over a sampled pool of documents. However, judgment coverage tends to be incomplete relative to the metrics being used to compute effectiveness, since collection size often makes it financially impractical to judge every document. As a result, a considerable body of work has arisen exploring the question of how to fairly compare systems in the face of unjudged documents. Here we consider the same problem from another perspective, and investigate the relationship between relevance likelihood and retrieval rank, seeking to identify plausible methods for estimating document relevance and hence computing an inferred gain. A range of models are fitted against two typical TREC datasets, and evaluated both in terms of their goodness of fit relative to the full set of known relevance judgments, and also in terms of their predictive ability when shallower initial pools are presumed, and extrapolated metric scores are computed based on models developed from those shallow pools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Modeling Rank-Independent Risk in Estimating Probability of Relevance

Estimating the probability of relevance for a document is fundamental in information retrieval. From a theoretical point of view, risk exists in the estimation process, in the sense that the estimated probabilities may not be the actual ones precisely. The estimation risk is often considered to be dependent on the rank. For example, the probability ranking principle assumes that ranking documen...

متن کامل

Matching Scores of System Relevance and User-Oriented Relevance in SID, ISC and Google Scholar

Background and Aim: The main aim of Information storage and retrieval systems is keeping and retrieving the related information means providing the related documents with users’ needs or requests. This study aimed to answer this question that how much are the system relevance and User- Oriented relevance are matched in SID, SCI and Google Scholar databases. Method: In this study 15 keywords of ...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Investigating the Impact of Authors’ Rank in Bibliographic Networks on Expertise Retrieval

Background and Aim: this research investigates the impact of authors’ rank in Bibliographic networks on document-centered model of Expertise Retrieval. Its purpose is to find out what kind of authors’ ranking in bibliographic networks can improve the performance of document-centered model.   Methodology: Current research is an experimental one. To operationalize research goals, a new test colle...

متن کامل

A new shape retrieval method using the Group delay of the Fourier descriptors

In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016